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Location is paramount to property value. Unfortunately, the conventional methods of 
valuation are often implicit in their treatment of location as a value determinant. This paper 
investigates the practicality of a method that provides for the explicit consideration of 
location in valuation by using a spatial interpolation technique known as the ordinary 
kriging method. To evaluate the performance of this single-variable location-explicit 
method, a comparison was made against the results generated with the multi-variable less 
location explicit Multiple Regression Analysis (MRA). 
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Introduction 

Existing methods of valuation range from 

the conventional techniques such as the 
comparison method to statistical techniques 
such as regression analysis. These methods 
are not always based on the explicit 
consideration of location in their 
determination of housing property value; 
this is despite the all-time recognition that 
location is a critical factor to property 
value. 

In this paper, we investigate a method that 
explicitly provides for the consideration of 
location in valuation. More specifically, the 
spatial interpolation technique of interest is 
the ordinary kriging method. This method 
proceeds by analysing the geographic 
arrangements of data and using the 
analysed information to interpolate value on 
other points of interest. For an evaluation 
of the method's predictive performance, the 
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value estimates derived by this method are 
compared against the actual property 
values. The estimation performance of this 
method is then compared against that of the 
multiple regression analysis (MRA) using 
the PRESS sums criterion. This comparison 
enables conclusions regarding the extent to 
which a single-variable location-explicit 
model performs against a multi-variable but 
location-implicit model of value prediction. 

As a tool for spatial analysis, kriging is not 
exactly new. Its property for handling the 
prediction of values where points are 
spatially dependent between one and 
another is known. In the realm of property 
valuation, however, the application of this 
method has remained practically unheard 
of. What makes this technique interesting 
to investigate is the fact that it explores the 
patterns of spatial dependence within local 
areas and uses the information to 
interpolate value at points of interest. This 



makes it a tool of different and greater 
precision to other surface interpolation 
techniques attempted before for property 
valuation. 

To implement this case study, a simulated 
dataset was in use. We start with a 
discussion of the motivations for 
considering surface interpolation technique. 

Spatial Interpolation for Housing 
Property: A Rationalisation 

The rationale behind spatial interpolation is 
the observation that, on average, values at 
points closer together in space are more 
likely to be similar than points farther apart 
(Tobler, 1979). This notion of spatial 
'association' is extendable to housing since 
house units close together tend to have 
similar values, concordant with the valuer's 
'tone of the list' assumption applied in 
rating valuation (Wyatt, 1994). Further, it 
is common practice in dealing with the 
traditional comparison method that, ceteris 
paribus, nearer houses take precedence over 
houses farther away in the choice as 
comparables. 

Valuers have for quite some time 
recognised the potential in exploiting the 
relationship between spatial autocorrelation 
and patterns in house values. Indeed, if it 
can be shown that meaningful associations 
exist between the positions in space of 
houses and the way the value of these 
houses relates to one another, then it is 
plausible that the former can be used as the 
basis for the prediction of the latter. The 
work of Byrne et al (1973) represents 
probably the earliest known attempt at 
exploring this possibility. In that study 
conducted in 1973, the investigators had 
used the trend surface analysis (TSA), a 
variant of the surface interpolation 
techniques, to determine housing prices in 
St. Albans on the basis of their locations. 
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It is well acknowledged here that 
interpolated surfaces are continuous while 
property values are discrete. However, if 
we can exploit a spatial interpolation 
method to create continuous surfaces from 
a sample of discrete points, we can derive 
the value estimate for each point from the 
interpolated surface. Indeed, if this 
interpolation method performs satisfactorily, 
we have indeed found another approach to 
mass valuation, which will be potentially 
useful for rating applications. 

Nonetheless, underlying the above 
approach is the pretense that we can predict 
a house value solely on the basis of its 
locational information. It is often the case 
that property values vary drastically even 
between neighbouring housing units, such 
as when a vacant detached residential plot 
is situated next to a fully built plot. In such 
a situation, spatial interpolation techniques 
would be of limited value. Still, means can 
be found to mitigate such an effect, both 
through the choice of appropriate 
interpolation methods and the careful 
stratification of the data to achieve 
improved homogeneity. 

The Kriging Method of Spatial 
Interpolation 

Kriging has developed from the practice in 
earth science. For this, it has also been 
referred to as the geo-statistical method of 
interpolation. A number of methods are 
available within the kriging family, such as 
block kriging, co-kriging and probabilistic 
kriging, but in this study we utilise the 
ordinary kriging method. 

The method of kriging was developed in the 
late 1960's by G. Matheron who was 
inspired by the contributions of D.G. Krige 
(Christensen, 1991). It was originally 
developed for use in the mining industry but 
has become increasingly popular in many 
fields of science and industry where there is 
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a need for evaluating data using the 
consideration of spatial or temporal 
correlations (Wackernagel, 1995). 

The methods developed by Matheron 
produce optimal results in the sense that the 
interpolation weights are chosen to optimise 
the interpolation functions in order to 
provide a 'best linear unbiased estimate' 
(BLUE) of the value of a variable at a given 
point (Burrough et ai, 1998). It is linear 
because it bases estimates on linear 
combinations of available data, unbiased 
because it aims to make the mean residual 
error equal to zero, and best because it aims 
to minimise the variance of the errors 
(Isaaks et ai, 1989). 

Kriging utilises the theory of regionalised 
variable which is founded on the notion that 
spatially distributed data behaves more like 
random variables and should therefore be 
treated stochastically (Oliver et ai, 1990). 
The theory assumes that the spatial 
variation in the data can be described as the 
sum of three components, namely the 
deterministic structural component 
corresponding to either a constant mean or 
a trend, the stochastic spatially correlated 
component, and the spatially independent 
residual term (Burrough et ai, 1998). In its 
simplest application, the theory assumes a 
constant local mean and a stationary 
variance of the differences between places 
separated by a given distance and direction; 
this constitutes the intrinsic hypothesis 
(Lam, 1983). 

The variance of the differences, denote A is 
the semi-variance. Formally 

Var[z(x)-z(x+h)]=E[ (z(x)-z(x+h) }2]=2y(h) (1) 

where z(x) is the value of some attribute at 
position x, and z(x+h) is the value at 
position (x+h). This semi-variance value 
depends on the separation distance between 
the points, h; the actual positions are not 
relevant. 
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Kriging is similar to inverse distance 
weighted averaging in that it uses a linear 
contribution of weights for calculating 
value estimates, but differs in that the 
weights are derived according to the 
variance minimisation and unbiasedness 
criteria that it self-provides. Kriging 
explores the nature of spatial 
autocorrelation in the data and produces a 
semi-variogram to reveal the spatial 
variation underlying the data. The semi­
variogram conveys useful information 
concerning the size, orientation and shape 
of the neighbourhood from which the 
sample points are drawn. Kriging also 
provides a measure of the error or 
uncertainty of the estimated surface (Lam, 
1983). 

Kriging analyses the pattern of spatial 
variation present in the data. The character 
of this variation is captured in functions 
such as the autocovariogram and (semi)­
variogram, which provide the information 
for optimising interpolation weights and 
search radii. Unlike most other interpolation 
methods, kriging involves an interactive 
investigation of the spatial behaviour of the 
phenomenon of interest represented by the 
z values prior to the selection of the best 
interpolation strategy for generating output 
surface. 

a. The rationale of Kriging for the 
current case study 

In a sense, this study performs a 
revisit of the surface interpolation 
problem in the context of property 
value prediction. As indicated 
earlier, Byrne et al (1973) attempted 
the use of trend surface analysis 
(TSA) to achieve the prediction of 
property value. In that study, the 
authors found the method of limited 
value in investigating local detail 
such as required by the problem. We 
argue here that TSA is by nature a 
global interpolator and is therefore 



not the most appropriate tool for 
dealing with short-range or local 
influences. Kriging is different in 
the sense that it investigates local 
patterns of spatial dependence and 
uses the analysed information to 
interpolate the values of interest. 
Due to this, it is thought that kriging 
would make for a more appropriate 
tool on the problem of such nature as 
the one at hand. This motivates the 
experimentation with kriging for the 
current investigation. 

Most methods of interpolation neither 
provide the means for determining the 
number of sample points, the size, 
shape and orientation of the sample 
neighbourhood to use, nor look 
beyond the simple function of 
distance for the estimate of 
interpolation weights; the errors of 
estimates are not given (uncertainties 
associated with interpolated values). 
Kriging provides all of the above. 

It has long been recognised that 
property prices tend to be similar for 
properties nearer to one another. 
This is explained in terms of a 
multitude of factors, but spatial 
separation has been known to playa 
significant contribution. This is so 
when dealing with point 
observations because units closer 
together will have similar values, 
concordant with the valuers' tone of 
the list assumption applied in rating 
valuation (Wyatt, 1994). Estimates 
of the dependent variable are made 
on the basis of location rather than 
by reference to independent 
variables (Shaw et ai, 1985). 

In terms of predictive performance, 
kriging has emerged superior to most 
other interpolation methods 
empirically. Isaaks et al (1989), in 
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conducting the comparison using the 
dataset from geological activity, 
shows that the ordinary kriging 
estimates not only lead to lower 
standard deviation of errors, but also 
that "the estimates are also very good 
according to many other criteria" 
such as the mean absolute error and 
mean squared error. In another study, 
by Burrough et al (1998), kriging 
performs favourably against other 
methods of interpolation. These 
results, although specific to the 
context of the individual studies, 
indicate kriging as capable of 
improving the quality of prediction. 

Kriging is unique compared to other 
estimation procedures in that it does 
not limit the weights to between 0 
and 1. Rather, it extends the 
weights' boundaries to include 
negative values as well as values 
greater than unity. As a result, it 
allows the possibility of estimates 
that are not necessarily constrained 
to the minimum-maximum range as 
defined by sample values. This 
allows estimates that lie beyond the 
minimum and maximum of sample 
values, which is useful because in 
reality, there is also the likehood that 
the true values being estimated lie 
beyond the extremes of the available 
samples. Procedures that restrict the 
weights to within 0 and I can only 
attain estimates that lie between the 
minimum and maximum sample 
values. 

The Methodology of Ordinary 
Kriging 

For a more comprehensive treatment 
of the ordinary kriging methodology, 
the reader is referred to Isaaks et al 
(1989). The steps involved 1D 

ordinary kriging are as follows: 



a. 

l. Compute the experimental 
variogram and deduce from the 
output whether it is feasible to 
interpolate the data 

2. If feasible, use a suitable 
variogram model to generate 
value surface on a regular grid 

3. Use the surface to interpolate 
values at unvisited sites 

Computing 
variogram 

the experimental 

The experimental variogram is the 
first step towards a description of the 
regionalised variation. It provides 
useful information for interpolation, 
optimlsmg sampling and 
determining spatial patterns. The 
variogram reveals the nature of the 
variance-covariance structure given 
by the actual data and provides an 
insight into the pattern of spatial 
continuity present in the dataset. 

If the conditions specified by the 
intrinsic hypothesis are fulfilled, 
the semi-variance y(h) can be 
estimated from sample data: 

where n is the number of pairs of 
sample points of observations of the 
values of attributes z separated by 
distance h. A plot of y (h) against 
h is known as the experimental 
variogram (Isaaks et at, 1989). 

With h representing the lag, a typical 
experimental variogram takes the 
appearance of a curve that shows a 
steep rise from lag 0 but which 
changes to a more gradual one at 
larger h to eventually reach some 
kind of a plateau. The shape is 
illustrated in Figure 1. 
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Figure 1: A Typical Shape for Experimental 
Variogram 

• (il) 

Since the experimental variogram is 
a plot of the variances of difference 
against lag distances, it provides an 
indication about the nature of 
spatial dependence present in the 
data. The shape derives from the 
fact that the spatial dependence 
between data points is greater when 
two points are at a shorter distance 
of one another than when they are 
further apart. The rising part of the 
curve describes how inter-site 
differences are spatially dependent: 
the closer the sites together, the more 
similar their z values are, as 
indicated by the low semi-variance 
values. 

h Modelling the experimental 
va rio gram 

The next step is to decide on the 
suitable model to fit the data, taking 
into account the configuration of the 
experimental variogram, the sill and 
the nugget values, which are further 
explained below. A curve from 
mathematical models is fitted to 
experimentally derived semi­
variances in order to describe the 
way in which semi-variance changes 
with the lag (Burrough, 1986), This 
curve displays several important 
features. First, at large lag values, it 
levels to what is known as a sill, 
implying that at these lag values, no 
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spatial dependence exists between 
the data points because all estimates 
of variances of difference are 
invariant with distance. Second, the 
curve rises from a low value to the 
sill, reaching it at a value h, known 
as the range. This describes the 
range of spatial distances at which 
inter-site differences are spatially 
dependent. Within this range, the 
closer together the sites, the more 
similar the values at the sites are. 
The range gives an idea about the 
size to consider for a search window. 
If the distance separating an 
unvisited site from a sampled point 
is greater than the range, then the 
latter can make no useful 
contribution to interpolation - it is 
too far away. 

The range of the variogram therefore 
provides information about the size 
of the search window to consider. In 
effect, it defines the radius of distance 
from the point under investigation 
within which sample data points 
should lie to be considered 
influential to the estimation. These 
distances can vary as a result of 
anisotropy, which modifies the shape 
of the search neighbourhood from a 
circle to an ellipse. 

Another feature of the fitted model is 
that it does not necessarily pass 
through the origin but cuts at a 
positive value of y (h) despite the 
theoretical assertion that the semi­
variance should be zero at lag O. 
This situation arises because the 
positive value estimates the residual, 
spatially uncorrelated noise gn. Also 
known as the nugget, gn represents 
the variance of measurement errors 
combined with that from spatial 
variation at distances much shorter 
than the sample spacing, which 
cannot be resolved (lsaaks et ai, 
1989). 
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A number of variogram models are 
possible but the more common 
models in use are the spherical, 
exponential and gaussian models. 
Basic variogram models can be 
divided into two broad groups, 
known generally as transition and 
non-transition models. Transition 
model is 'bounded' in the sense that 
its variogram reaches towards an 
upper bound in the sill. Non­
transition model, on the other hand, 
is unbounded since its variogram 
rises continuously as a function of 
lag distance h. Some transition 
models reach their sill 
asymptotically; for such models, the 
range is arbitrarily defined to be the 
distance at which 95% of the sill is 
reached (Isaaks et ai, 1989), 

Briefly, the spherical model has a 
linear behaviour at small separation 
distances near the origin but one that 
flattens out at larger distances to 
reach the sill at a. The tangent at the 
sill crosses the sill at about two­
thirds of the range a (lsaaks et ai, 
1989). This model is normally used 
where there is a clear range and sill 
(Burrough et ai, 1998). The 
exponential model is linear at very 
short distances near the origin but 
rises more steeply compared to the 
spherical model and flattens more 
gradually. The model is more 
appropriate where the approach to 
the range is more gradual. The 
Gaussian model has a parabolic 
shape near the origin and is often 
used to model extremely continuous 
phenomena. Like the exponential 
model, the Gaussian model reaches 
its sill asymptotically and the range 
is defined as the distance at which 
the variogram value is 95% of the 
sill. It is the only transition model 
whose shape has an inflexion point. 



c. Fitting a model 

Variogram fitting IS an interactive 
process requiring considerable 
judgement and skill (Burrough et aI, 
1998). Model fitting is in order to 
produce the values of the parameters 
a, Co and C r These values can be 
obtained by least-squares or maximum 
likelihood procedure. 

When the nugget variance dominates 
the local variation and the 
experimental variogram shows no 
tendency to diminish as h e 0, the 
interpretation is that the data are so 
noisy that interpolation is not 
sensible. In such a situation, the 
best estimate of z( x) is the overall 
mean computed from all sample 
points in the region of interest 
without taking spatial dependence 
into consideration. 

A noisy variogram, in which the 
experimentally derived seml­
variances are scattered, suggests that 
too few examples have been used to 
compute it. As a rule of thumb, at 
least 50 - 100 data points are 
necessary to achieve a stable 
variogram although smooth surfaces 
require fewer points than those with 
irregular variation. Smoother 
variograms can also be obtained by 
increasing the size of the search 
window. 

The presence of a hole effect in the 
experimental variogram (a dip in the 
semi-variances at distances greater 
than the range) may indicate a 
pseudo-periodic pattern due to long 
range variation over a study area 
that is too small to encompass the 
total range of variation (Burrough et 
ai, 1998). If the range is large, then 
long-range variation dominates: if it 
is too small, then the major variation 
occurs over short distances. 
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d. Dealing with the directional issues 

Anisotropy in the experimental 
variogram suggests a directional 
effect in value pattern, but 
directional differences can also 
occur if there are insufficient 
samples to get robust estimates in all 
directions. In many cases where 
samples are spaced irregularly, a 
circular search radius is used to 
define a zone whose mid-point is h 
from its centre. All data points 
falling within the circle are used to 
estimate the contribution of (z - zy 
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from all pairs. If directional effect is 
absent, the resulting variogram is 
isotropic, i.e., it results from 
averagIng over all directions 
(Burrough et aI, 1998). However, 
variograms can also be computed in 
specific directions /3, in which case 
they are known as anisotropic 
variograms. If different ranges and 
sills are obtained for different 
variograms, they may indicate 
spatial variation that varies with 
direction. 

Kriging the Property Value: A Case Study 

The implementation of this kriging case 
study was performed with GS+, a 
commercial geo-statistical package 
available from Gammadesign. This 
software provides the functionality 
necessary for performing the various tasks 
required in kriging analysis. Further, it 
generates its output in ASCII files which 
can be read into other GIS application 
software such as ArcView. 

As a tool for kriging, GS+ is rather versatile 
(Robertson, 1998). It copes well with 
interactive needs of the user. Its 
interactivity allows models to be refined, or 
the parameters to be adjusted on the fly. 
This is very useful particularly when the 



need is to consider several alternative 
models instead of just one. Speed is also 
its plus point. Finally, the 3-d mapping it 
provides along with the zoom and rotation 
capabilities allow the user full control over 
the display. 

a. Preparing the Data 

The dataset for this case study comes 
from simulated house prices in 
Newcastle upon Tyne, UK. It 
embraces a total of 37,812 housing 
properties located within the eight 
sub-areas of Benwell, Byker, 
Fenham, Gosforth, Heaton, Jesmond, 
Kenton, Longbenton and Walker. 
Each house is represented by its seed 
point in the digital map, and this has 
been extracted from the Landline 
data, which provides the original 
positional information. 

The data was then split into two 
smaller sub-samples in the 
proportion of 80% to 20%. The 
larger sub-sample, consisting of 
30,250 data points, is to be used in 
the modelling. The smaller sub­
sample consisting of the remaining 
7,562 data points is to be retained as 
an independent 'test' sample for the 
purposes of tests on the models 
derived with the first sub-sample. 

In undertaking this case study, three 
effects are of particular interest to 
investigate in terms of their 
influences on the performance of 
kriging models: first, the effect of 
sample data density; second, the 
effect of sample stratification by 
house type; and third, the effect of 
variable normalisation. 

In the real world, house price data 
are not as abundant as the simulated 
data suggests since such data does 
not regularly become available. 
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House price data arises when the 
property undergoes market 
transactions, but for any particular 
property, this does not occur with any 
regUlarity. Further, property value is 
not static and changes over time. 
Since value has its validity period as 
dictated by the market to which the 
property relates, not all price data is 
relevant for a particular time-period 
of interest. This introduces a further 
limitation to the availability of value 
data. To study the influence of data 
availability on kriging's predictive 
performance, tests at three levels of 
data density corresponding to 5,000, 
10,000 and 15,000 house units will be 
performed. 

It is commonly observed that 
different house types have different 
characteristics and this heterogeneity 
leads to their different value classes 
in the market. House type is 
therefore a significant influence to 
consider and needs to be accounted 
for in modelling. Kriging, due to its 
single-variable nature, has no 
intrinsic means for dealing with this 
problem. As such, it would also be 
of interest to investigate if separate 
modelling of each property type 
would lead to better performance 
with kriging. 

So far, the basis of interpolation is 
the value for the total property (land 
and building). However, it is also of 
interest to investigate the effect of 
value normalisation on kriging's 
predictive performance. Value 
normalisation in this study means the 
'devaluation' of whole property 
value in which the value of a house 
is averaged over its parcel size. 
Underlying this approach is the 
supposition that normalising this 
way will improve homogeneity in 
the data and hence help improve the 
modelling with kriging. 



h Variogram modelling on property 
value 

Figure 2 shows the isotropic 
variogram produced from 10,000 
house values in this study. Plotting 
at uniform lag distance intervals of 
730 metres, the plot shows a typical 
rising trend, hitting the peak at an 
approximate lag distance of 3,400 
metres followed by a declining trend 
to the trough at about 5,400 metres 
and a rising trend again thereafter. 
The whole shape takes the 
appearance of a reflected S-curve. 
The semi-variance analysis for the 
data taken at lower and higher 
densities of 5,000 and 15,000 points 
respectively reveals similar 
variogram shapes, as shown in 
Figure 3. 

Figure 2: Isotropic Variogram for the 10,000 Data 
Points 

Semi~variance analysis based on IO,OOa points 

A clo~e-up of the isotropic variogram 
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Figure 3: Isotropic Variogram for the 5,000 and 
15,000 Data Points Respectively 

Semi-variance analysis based on 5.000 poin[~ 

Semi-variance anah;~is based on 15,000 point~ 

The variogram indicates spatial 
dependence that weakens as 
separation distance increases up to 
around 3,400 metres but this 
dependence seems to grow thereafter 
for some larger separation distances 
before diminishing again finally. 
This behaviour of spatial 
dependence is generally typical apart 
from the temporary dip, which is 
rather anomalous when the ideal 
experimental variogram would show 
a clear and horizontal sill after 3,400 
metres. In the circumstances, it 
seems best to treat the data with one 
of the transition models, by 
assuming the presence of a sill that 
cuts a path roughly midway between 
the peak and the trough. Indeed the 
default model fitted by the GS+ is 
precisely of this nature. 

The variogram in Figure 4 shows no 
clear anisotropy or directional 
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Figure 4: An Analysis of the Multi· Directional 
Effect of Spatial Dependence 
(anisotrophy) 

Vari(Jgrams for the multi-directional semi-variance analy"i~ on ';,000 
data point~ 

Variograms for the multi-directional semi-variance analysis on 15,000 
data points 

variation of spatial dependence in 
the data, and this negates the need to 
consider models of non­
omnidirectional nature. 

c. Modelling for property value as 
normalised by parcel size 

Figure 5 shows the experimental 
variogram produced from the 5,000 
data points by the normalised value 
variable. The semi-variogram 
pattern seen here defies the textbook 
description of an ideal variogram 
shape. Here, the typical rising trend 
at the beginning is followed by an 
ever declining trend to give the 
overall appearance of a peaked hill. 
This appears to indicate that at 
separation distances larger than 
about 3,300 metres, the square metre 
value of houses teads to become 
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Figure 5: The Variogram for the Normalised 
Value Based on the 5,000 Data Points 
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more similar again, in fact more 
similar the further the houses are 
apart. This behaviour is neither 
intuitive nor easy to explain in the 
present data set. The nature of 
spatial dependence in the data as 
described by the experimental 
variogram appears too anomalous to 
be treated with kriging. On this 
basis, the planned extension to this 
investigation involving the 
normalised value is abandoned and 
is not pursued further in this case 
study. 

d. Modelling by property type 

Modelling by property type requires 
separate semi-variance analysis on 
the data points on different property 
types. The implications are two-fold 
here: each property type is a much 
smaller sample size than the original 
work dataset, and each property type 
is an uneven distribution of data 
points spatially. Figure 6 shows the 
spatial distribution and sample size 
for each house type. 

It is clear from Figure 7 that the 
variograms are not as smooth as for 
the whole work dataset. The 
combined effects of reduced sample 
size and the scatteredness of data 
points could have contributed to this 
situation. The variogram for flat 
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Figure 6: The Spatial Distribution of Houses by Type 

Newcastl~ (lata 'lewc.~s~l~ d3ta , 
• . ~ ,..., 

• • • • 
•• • -. • ,. 

• ... • 

Flat (607 points) Apartment (2.391 points) Detached (3.283 pOilUS) 

Newcastle da!8 Newcastle cata 

~~~ 
. ." 

Semi-detached (7.782 points) Terraced (11.043 points) Link house (5.144 pOints) 

units, which has the lowest number 
of points, is particularly jagged. It is 
also noticed that variogram 
smoothness in this data generally 
improves for the larger sample house 
types although the semi-detached 
variogram provides an exception; this 
is certainly true in the case of the link 
house. 

The variogram for the apartment data 
is devoid of a sill but instead shows a 
continuous linear rise over the spatial 
extent considered. For such spatial 
structure, theory recommends the use 
of a linear model (Burrough et ai, 
1998). 

e. Value interpolation by Kriging 

Given the information from their 
respective variograms, kriging 
interpolations are performed on the 
independent 7,562 point test dataset. 
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This allows the house value 
represented by each point to be 
estimated by the kriging method. 
Since the spatial structure in the 
normalised values does not provide a 
clear case of spatial dependence for 
modelling with kriging and also, 
since the patterns of spatial 
dependence for individual property 
types are too erratic, the 
interpolations based on the 
individual types are abandoned. 

A series of kriging interpolation are 
performed based on the three levels 
of sample density used for the weight 
calculations. The interpolated values 
are then compared against their 
corresponding original final values in 
the dataset and the PRESS statistics 
calculated. Although kriging does 
produce estimates of errors, these 
estimates are not looked at because 
the PRESS statistics present a more 
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Figure 7: The Isotropic Variograms by House Type 
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desirable criterion for the 
comparison of performance due to 
their tests on independent samples, 

The PRESS statistic is defined as: 
where, 

/'/?r. ...... \ .1 ) 

Apartment 

Semi~detached 

Link 

N= the number of observations In 

the test sample 
P

j
= predicted house value 

Aj=the observed house price 

The aim is to achieve minimum value for 
PRESS. The model with the smallest 
PRESS statistic prevails as the best model 
for predictive performance. 
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The results on four of the interpolation runs are of interest and their PRESS sum 
calculations are presented in Table 1. 

Table 1: The PRESS Statistics Obtained for the Different Levels of Data Density Used in the 

Kriging of Independent Test Data I)oints 

Data density and model fitted 

Spherical model on 5,000 data points 

Exponential model on 5,000 data points 

Spherical model on 10,000 data points 

Spherical model on 15,000 data points 

There is a progressive reduction in the 
PRESS sum with greater number of data 
points used. Since lower PRESS sums are 
associated with higher predictive 
performance, the above results suggest that 
overall, the use of a greater number of 
sample points has led to improved 
predictive power of krigi ng in th is 
investigation. At the individual property 
level, however, the position is not so clear. 
The statistics on PRESS maximum show 
that increasing the sample size does not 
necessarily reduce the gap between the 
actual and the predicted values in the 
property with the largest value difference. 

Comparing the Predictive Performances 
of Kriging and MRA 

For the comparison of predictive 
performance between kriging and MRA, 
PRESS statistics are again used. They are 
computed from the predictions made by 
both the methods on house values in the 
common (7,562 points) test dataset. The 
PRESS statistics for the kriging models are 
already available as a result of the 
comparison performed on the effect of 
different sample sizes used on predictive 
performance. It is now necessary to obtain 
similar statistics for the MRA models. 

For the MRA, two models have emerged as 
the best in terms of predictive performance 
in this research. The models are EnterA and 
StepA (Appendix A). To arrive at the 
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PRESS Sum PRESS Maximum 

915,481,005,731 25,913,695,301 

864,920,477,807 26,800,453,327 

834,042,753,822 25,876.385,828 

793,489,424,232 26,114.944,609 

prediction of these models on the test data, 
their equation forms are applied on the 
appropriate variables in the dataset 
concerned. Once the predicted values for 
each model have been obtained, PRESS 
statistics are calculated in the same way as 
before. 

Table 2 presents the PRESS statistics for 
both the kriging and MRA models. The 
PRESS sums indicate that the kriging 
models have not outperformed the MRA 
models in terms of predictive performance. 
In fact, the PRESS sums of the latter are 
more than four times lower than that 
achieved by the best model from kriging. 
The means and standard deviations of the 
PRESS suggest that the variability in the 
gap between predicted and actual values is 
much greater in kriging than in the MRA. 
Given the fact that the MRA models have 
been derived with a larger sample of 30.250 
data points and bearing in mind the finding 
that predictive improvements have been 
achieved with successive increases in 
sample size used, it is interesting how much 
further kriging models would have 
improved if this investigation has had the 
opportunity of modelling them with the 
larger sample. 

However, kriging results do have their 
interesting aspects too in this investigation. 
As Table 3 shows, the minimum predicted 
values obtained by the kriging models are 
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Table 2: PRESS Statistics Obtained from Modelling the Independent Test Dataset: Kriging V. MRA 

Model PRESS Sum PRESS 
Minimum 

KRIGING 

15000, spherical 793,489,424,232 0.29 

10000, spherical 834,042,753,822 0.38 

5000, exponential 864,920,477,807 2.69 

5000, spherical 915,481,005,731 0.10 

MRA 

Stepwise (StepA) 181,942,677,523 0.23 

EnterA (EnterA) 181,972,992,980 1.93 

much closer to the actual minimum 
property value in the sample compared to 
those of the MRA models. Further, the 
kriging models do not produce negative 
predictions whereas the MRA models do. 
If this is taken in isolation, it means that 
kriging is more realistic than MRA since 
their estimates are more 'acceptable' in 
terms of the common perceptions in the real 
estate community. The krigings' predicted 

PRESS PRESS PRESS 
Maximum Mean Std. Dev 

26,114.944,609 104,931,159 423.214,465 

25,876,385,828 110,293,937 430,836,079 

26,800,453,327 114,377,212 441,553,144 

25,913,695,301 121,063,344 435,826,102 

3,714,051,752 24,060,127 82,654,039 

3,719,835,025 24,064,136 82,697,784 

means are in line with the mean of the 
actual value. So are the standard 
deviations; in fact the krigings' standard 
deviations are smaller than that of the actual 
value. Unfortunately, the ceiling values of 
prediction in kriging are much lower than 
the maximum of the actual value. This has 
meant that very poor predictions have been 
made on the properties with the very largest 
actual values. 

Table 3: Descriptive Statistics for the Predicted and Actual Values 

Range Minimum 

KRIGING 

15000, spherical 134,014.74 9,656.66 

10000, spherical 173,495.59 8,361.57 

5000, exponential 149,443.39 9,010.08 

5000, spherical 131,490.60 9,441.27 

MRA 

Stepwise (StepA) 192,053.77 - 7,641.80 

EnterA (EnterA) 192,055.74 - 7,691.19 

ACTUAL VALUE 231J,271.00 7,084.00 

Conclusions 

This study shows that kriging is a poorer 
predictor of property values compared to 
MRA. However, this has to be set against 
the fact that a simulated dataset has been 
worked with and that this dataset has been 

Maximum Mean Std. Dev. 

143,671.40 43,143.26 17,565.00 

181,857.16 43,209.54 18,506.91 

158,453.47 43,063.52 17,429.49 

140,931.87 43,079.91 16,699.61 

184,411.98 43,291.57 19,700.88 

184,364.55 43,291.72 19,701.67 

245,355.00 43,346.78 20,533.08 

geared directly towards modelling with 
MRA. Given that this is the case, the 
results are perhaps not too surprising. It 
would be interesting if we can make similar 
comparisons based on real data where both 
methods are on the same level of advantage 
or disadvantage. 
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Despite its comparatively inferior 
predictive performance, the potential of 
kriging for mass appraisal of housing 
properties is perhaps not to be dismissed 
altogether. The experimental variograms 
arrived at in this study show that the 
patterns of spatial dependence exist in 
property values, suggesting that the 
exploitation of spatial correlation for value 
determination does have its basis. It is just 
that reliance on this pattern of spatial 
dependence alone may not be good 
enough to arrive at estimates that compare 
favourably with MRA, or perhaps that the 
kriging models are in need of further 
refinements. Further investigations are 
necessary. As the bottom line, kriging 
should be useful where the concern is with 
the investigation on locational factor in 
isolation in valuation as opposed to the 
investigation on property value in this 
study, which involves a multiplicity of 
factors. 

The attraction of kriging comes from the 
fact that it utilises the information about 
localised spatial variation to estimate 
values at local positions. To arrive at this 
information, however, a large number of 
sample points and their fair distribution 
over the study area are important. It is this 
that probably makes the technique rather 
workable for housing properties, where the 
volume of data and their spatial omni­
presence are relatively more favourable 
compared to most other types of properties. 
For properties that do not have such 
advantages (industrial properties, for 
example, are clustered around certain 
locations only), the practicality of a similar 
exercise remains to be tested and requires a 
separate study. For the moment we can 
only presume that the reliability of the 
estimates will be lower due to the greater 
presence of regions where no sample data 
points are available to draw information 
from for interpolation. 

One issue remains particularly outstanding 
from this study: the lack of intuitive appeal 
that some of the kriging results provide. It 
is difficult to reconcile the fact that the 
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variogram is better behaved for the data 
that combines all the property types than 
for the data that has been made more 
homogeneous by dealing with only a 
particular property type. Probable 
explanations lie in the reduced sample size 
and the unevenness of spatial spread that 
occurs in the individual property dataset, 
but these are just possibilities. Could there 
be other more valid explanations? 

It is argued that a major issue with kriging 
lies in the fitting of appropriate models to 
interpolate. This is because the fitting 
involves examining the variogram plots 
and choosing a model that is considered the 
best fit, a procedure that can entail arbitrary 
decisions on the part of the user. Collins 
(1996), for example, remarks that kriging 
has been criticised due to the subjective 
nature of variogram fitting - a central 
component of kriging. Nonetheless, 
arbitrariness is not something the user can 
avoid completely in dealing with problems 
of this nature. For that matter, not even the 
MRA can claim to be entirely free from 
arbitrary decisions, particularly in the 
choice of variables and of equation forms 
to use. On this score, kriging cannot be 
said to be any less desirable than the 
regression technique. 

On the basis of the above initial evaluation, 
this study recommends that kriging should 
be investigated further before decisions are 
made about its utility for valuation. This 
constitutes yet another benefit the 
consideration of geography contributes 
towards the practice in valuation. 
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Appendix A 

Comparison of Regression Coefficent from the Different Regression Models 
NEwell DATASET (24,033 records) 

UNLOGGED LOGGED 

FULL VARIABLE 

EMerA StepA EnterB StepB 

(Constant) - 2,286.615 - 1,454.892 14,923.027 15,188478 

ACCESS 2,484.021 2,361.140 2,377.030 2,338.168 

AGE - 239.279 - 239.322 - -
BLD AREA 189.742 189771 190.577 190.525 

C_FIN 455.750 455487 466.173 465982 

DF_SCH - 1.097 - 1087 - 0.545 - 0567 

DlSTCITY - 2.503 - 2.504 - 2.536 - 2.535 

DISTROAD 0.750 - 0.220 -
DISTTOWN - 1.359 - 1.357 - 1.442 - 1.444 

DSTMETRO - 0.302 - 0.307 - -

GEOG] -22,623.081 - 22,632347 - 20,957.772 - 20,967.179 

GEOG2 -19,876.360 - 19,874.560 - 19,079.748 - 19,091.350 

GEOG3 - 20,161.101 - 20,179.121 -18,599.337 -18,614.185 

GEOG4 2,586.272 2,583.948 3,245.591 3,246.849 

GEOGS 24,098.266 24,095323 24,504.722 24,502.517 

GEOG6 10,676.208 10,676.893 10,913.277 10,918.283 

GEOG7 - - -
GEOG8 -13,572.188 - 13,577.371 - 12,851.418 -12,841.671 

GEOG9 -16,538.263 - 16,544409 - 15,696.363 - 15,698330 

LANDAREA 83.290 83253 83486 83.542 

LEVEL_NO - 5,909.085 - 5,912.154 - 5,600600 - 5,594.127 

LNDMETRO - - - 1,122.217 - 1,122.864 

LNAGE - - - 4,428472 - 4,429468 

LNNOBATH - - 4,821.346 4,820.199 

LNROOMNO - - 7,629416 7,626449 

NBOR_QUA 3,144258 3,147.381 3,212139 3,212.718 

NO BATH 2,913.904 2,914.328 -
NOISE - 1.324.245 - 1,363.038 - 1,402.315 - 1,413.945 

fLFIN 1.005.874 1,005.625 1,004582 1,004.176 

ROOM_NO 2,431.791 2,431.219 - -
UNITYPE] 28.357 - - 785.530 - 781.006 

UNITYPE2 3,268.569 3,262.827 3,302.4 10 3,308.332 

UNITYPE3 2,455.196 2,455.183 681.470 682.187 

UNITYPE4 - -
UNITYPES 874.841 874.400 - 572.934 - 579.376 

UNITYPE6 - 2,990.528 - 2,992.763 - 3,596005 - 3,615763 

ZONE] - - - -
ZONE2 6.842.258 6,840429 6,733303 6,729109 

ZONE3 - 2,897.712 - 2,897.610 - 2,856.022 - 2,857.522 

ZONE4 - 1,479.899 - 1,495.077 - 1,055444 -
ZONES 8,296.337 7,626.575 -

ZONE6 - 3,460.108 - 3,462.749 - 4,829.184 - 4,818.577 

Note: The base reference of the above models IS a hypothetIcal property of the LINK HOUSE type 

located in RESIDENTIAL zone in HEATON. 
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Appendix Al 

Comparison of Regression Coefficent from the Different Regression Models (contd,) 

NEwell DATASET (24 033 records) 

UNLOGGED LOGGED 

DROPPED VARIABLE 

F:nterC StenC EnterD StenD 

(Constant) - 8,907.997 - 8,894.750 6,741.762 6,744.574 
ACCESS 2,443.673 2,442.214 2,426.390 2,425.849 
AGE - 229.271 - 229.268 - -
BLD_AREA 134.132 134.132 136.723 136.719 
C_FIN 440.913 440.545 451.437 451.023 
DF_SCH - 1.427 - 1.436 - 0.864 - 0.866 
DISTCITY - 2.772 - 2.771 - 2.787 - 2.786 
DISTROAD - - - -
DISTTOWN - 1.159 - 1.161 - 1.241 - 1.242 
DSTMETRO - 0.197 - 0.199 - -
GEOG1 -22,462.486 -22,459.119 - 20,852.729 -20,848.820 
GEOGl -19,587.310 -19,589.577 - 18,810.346 -18,811.732 
GEOG3 -19,962.375 -19,963.678 - 18,431.178 -18,431.520 
GEOG4 3,115.646 3,115.653 3,712.447 3,712.134 
GEOGS 24,209.355 24,209.986 24,587.238 24,588.189 
GEOG6 11 ,387.087 11,387.021 11 ,579.619 11,579.535 
GEOG7 - - -
GEOG8 -13,018.798 -13,015.500 - 12,375.471 -12,374.898 
GEOG9 -16,882.447 -16,880.815 - 16,063.152 -16,063.079 
LANDAREA 118.690 118.695 117.635 117.634 
LEVEL_NO - - - -
LNDMETRO - - - 992.465 - 992.343 
LNAGE - - -4,219.521 - 4,219.169 
LNNOBATH - - 4,298.640 4,298.650 
LNROOMNO - 5,989.403 5,988.106 
NBOR_QUA 3,152.117 3,152.194 3,217.570 3,217.661 
NO_BATH 2,741.783 2,742.075 - -
NOISE - 1,252.817 - 1,252.382 - 1,306.638 - 1,305.851 
(LFIN 1,003.710 1,003.366 1,002.005 1,001.738 
ROOM_NO 1,828.453 1,827.830 - -
UNITYPE1 3,703.790 3,703.473 2,671.978 2,671.296 
UNITYPE2 7,028.773 7,027.252 6,740.750 6,738.879 
UNITYPE3 2,667.579 2,667.199 1,020.444 1,020.749 
UNITYPE4 - - - -
UNITYPES - 2,079.645 - 2,081.788 - 3,250.310 - 3,250.959 
UNITYPE6 - 8,526.287 - 8,531.673 - 8,850.190 - 8,851.125 
ZONE1 - - -
ZONEl 7,333.813 7,331.049 7,221.978 7,221.186 
ZONE3 - 2,950.443 - 2,952.494 - 2,927.396 - 2,927.868 
ZONE4 - 478.218 - -110.863 -
ZONES 7,747.334 - 7,150.754 -
ZONE6 - 4,821.144 - 4,816.834 - 6,084.707 - 6,082.082 

Note: The base reference of the above models is a hypothetical property of the LINK HOUSE type 

located in RESIDENTIAL zone in HEATON. 
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