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Abstract

Location is paramount to property value. Unfortunately, the conventional methods of
valuation are often implicit in their treatment of location as a value determinant. This paper
investigates the practicality of a method that provides for the explicit consideration of
location in valuation by using a spatial interpolation technique known as the ordinary
kriging method. To evaluate the performance of this single-variable location-explicit
method, a comparison was made against the results generated with the multi-variable less
location explicit Multiple Regression Analysis (MRA).
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Introduction

Existing methods of valuation range from

the conventional techniques such as the
comparison method to statistical techniques
such as regression analysis. These methods
are not always based on the explicit
consideration of location in their
determination of housing property value;
this is despite the all-time recognition that
location is a critical factor to property
value.

In this paper, we investigate a method that
explicitly provides for the consideration of
location in valuation. More specifically, the
spatial interpolation technique of interest is
the ordinary kriging method. This method
proceeds by analysing the geographic
arrangements of data and using the
analysed information to interpolate value on
other points of interest. For an evaluation
of the method’s predictive performance, the
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value estimates derived by this method are
compared against the actual property
values. The estimation performance of this
method is then compared against that of the
multiple regression analysis (MRA) using
the PRESS sums criterion. This comparison
enables conclusions regarding the extent to
which a single-variable location-explicit
model performs against a multi-variable but
location-implicit model of value prediction.

As a tool for spatial analysis, kriging is not
exactly new. Its property for handling the
prediction of values where points are
spatially dependent between one and
another is known. In the realm of property
valuation, however, the application of this
method has remained practically unheard
of. What makes this technique interesting
to investigate is the fact that it explores the
patterns of spatial dependence within local
areas and uses the information to
interpolate value at points of interest. This
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makes it a tool of different and greater
precision to other surface interpolation
techniques attempted before for property
valuation.

To implement this case study, a simulated
dataset was in use. We start with a
discussion of the motivations for
considering surface interpolation technique.

Spatial Interpolation for Housing
Property: A Rationalisation

The rationale behind spatial interpolation is
the observation that, on average, values at
points closer together in space are more
likely to be similar than points farther apart
(Tobler, 1979). This notion of spatial
‘association’ is extendable to housing since
house units close together tend to have
similar values, concordant with the valuer’s
‘tone of the list’ assumption applied in
rating valuation (Wyatt, 1994). Further, it
is common practice in dealing with the
traditional comparison method that, ceteris
paribus, nearer houses take precedence over
houses farther away in the choice as
comparables.

Valuers have for quite some time
recognised the potential in exploiting the
relationship between spatial autocorrelation
and patterns in house values. Indeed, if it
can be shown that meaningful associations
exist between the positions in space of
houses and the way the value of these
houses relates to one another, then it is
plausible that the former can be used as the
basis for the prediction of the latter. The
work of Byrne et al (1973) represents
probably the earliest known attempt at
exploring this possibility. In that study
conducted in 1973, the investigators had
used the trend surface analysis (TSA), a
variant of the surface interpolation
techniques, to determine housing prices in
St. Albans on the basis of their locations.

It is well acknowledged here that
interpolated surfaces are continuous while
property values are discrete. However, if
we can exploit a spatial interpolation
method to create continuous surfaces from
a sample of discrete points, we can derive
the value estimate for each point from the
interpolated surface. Indeed, if this
interpolation method performs satisfactorily,
we have indeed found another approach to
mass valuation, which will be potentially
useful for rating applications.

Nonetheless, underlying the above
approach is the pretense that we can predict
a house value solely on the basis of its
locational information. It is often the case
that property values vary drastically even
between neighbouring housing units, such
as when a vacant detached residential plot
is situated next to a fully built plot. In such
a situation, spatial interpolation techniques
would be of limited value. Still, means can
be found to mitigate such an effect, both
through the choice of appropriate
interpolation methods and the careful
stratification of the data to achieve
improved homogeneity.

The Kriging Method
Interpolation

of Spatial

Kriging has developed from the practice in
earth science. For this, it has also been
referred to as the geo-statistical method of
interpolation. A number of methods are
available within the kriging family, such as
block kriging, co-kriging and probabilistic
kriging, but in this study we utilise the
ordinary kriging method.

The method of kriging was developed in the
late 1960’s by G. Matheron who was
inspired by the contributions of D.G. Krige
(Christensen, 1991). It was originally
developed for use in the mining industry but
has become increasingly popular in many
fields of science and industry where there is
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a need for evaluating data using the
consideration of spatial or temporal
correlations (Wackernagel, 1995).

The methods developed by Matheron
produce optimal results in the sense that the
interpolation weights are chosen to optimise
the interpolation functions in order to
provide a ‘best linear unbiased estimate’
(BLUE) of the value of a variable at a given
point (Burrough er al, 1998). It is linear
because it bases estimates on linear
combinations of available data, unbiased
because it aims to make the mean residual
error equal to zero, and best because it aims
to minimise the variance of the errors
(Isaaks et al, 1989).

Kriging utilises the theory of regionalised
variable which is founded on the notion that
spatially distributed data behaves more like
random variables and should therefore be
treated stochastically (Oliver et al, 1990).
The theory assumes that the spatial
variation in the data can be described as the
sum of three components, namely the
deterministic  structural component
corresponding to either a constant mean or
a trend, the stochastic spatially correlated
component, and the spatially independent
residual term (Burrough et al, 1998). In its
simplest application, the theory assumes a
constant local mean and a stationary
variance of the differences between places
separated by a given distance and direction;
this constitutes the intrinsic hypothesis
(Lam, 1983).

The variance of the differences, denote A is
the semi-variance. Formally
Var{z(x)-z(x+h)]=E[{2(x)-2(x+h)}}]=2v(h) (1)
where z(x) is the value of some attribute at
position x, and z(x+#h) is the value at
position (x+h). This semi-variance value
depends on the separation distance between
the points, h; the actual positions are not
relevant.
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Kriging is similar to inverse distance
weighted averaging in that it uses a linear
contribution of weights for calculating
value estimates, but differs in that the
weights are derived according to the
variance minimisation and unbiasedness
criteria that it self-provides. Kriging
explores the nature of spatial
autocorrelation in the data and produces a
semi-variogram to reveal the spatial
variation underlying the data. The semi-
variogram conveys useful information
concerning the size, orientation and shape
of the neighbourhood from which the
sample points are drawn. Kriging also
provides a measure of the error or
uncertainty of the estimated surface (Lam,
1983).

Kriging analyses the pattern of spatial
variation present in the data. The character
of this variation is captured in functions
such as the autocovariogram and (semi)-
variogram, which provide the information
for optimising interpolation weights and
search radii. Unlike most other interpolation
methods, kriging involves an interactive
investigation of the spatial behaviour of the
phenomenon of interest represented by the
z values prior to the selection of the best
interpolation strategy for generating output
surface.

a. The rationale of Kriging for the
current case study

In a sense, this study performs a
revisit of the surface interpolation
problem in the context of property
value prediction. As indicated
earlier, Byrne et al (1973) attempted
the use of trend surface analysis
(TSA) to achieve the prediction of
property value. In that study, the
authors found the method of limited
value in investigating local detail
such as required by the problem. We
argue here that TSA is by nature a
global interpolator and is therefore
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not the most appropriate tool for
dealing with short-range or local
influences. Kriging is different in
the sense that it investigates local
patterns of spatial dependence and
uses the analysed information to
interpolate the values of interest.
Due to this, it is thought that kriging
would make for a more appropriate
tool on the problem of such nature as
the one at hand. This motivates the
experimentation with kriging for the
current investigation.

Most methods of interpolation neither
provide the means for determining the
number of sample points, the size,
shape and orientation of the sample
neighbourhood to use, nor look
beyond the simple function of
distance for the estimate of
interpolation weights; the errors of
estimates are not given (uncertainties
associated with interpolated values).
Kriging provides all of the above.

It has long been recognised that
property prices tend to be similar for
properties nearer to one another.
This is explained in terms of a
multitude of factors, but spatial
separation has been known to play a
significant contribution. This is so
when dealing with point
observations because units closer
together will have similar values,
concordant with the valuers’ tone of
the list assumption applied in rating
valuation (Wyatt, 1994). Estimates
of the dependent variable are made
on the basis of location rather than
by reference to independent
variables (Shaw et al, 1985).

In terms of predictive performance,
kriging has emerged superior to most
other interpolation  methods
empirically. Isaaks er al (1989), in
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conducting the comparison using the
dataset from geological activity,
shows that the ordinary kriging
estimates not only lead to lower
standard deviation of errors, but also
that “the estimates are also very good
according to many other criteria”
such as the mean absolute error and
mean squared error. In another study,
by Burrough et al (1998), kriging
performs favourably against other
methods of interpolation. These
results, although specific to the
context of the individual studies,
indicate kriging as capable of
improving the quality of prediction.

Kriging is unique compared to other
estimation procedures in that it does
not limit the weights to between O
and 1. Rather, it extends the
weights’ boundaries to include
negative values as well as values
greater than unity. As a result, it
allows the possibility of estimates
that are not necessarily constrained
to the minimum-maximum range as
defined by sample values. This
allows estimates that lie beyond the
minimum and maximum of sample
values, which is useful because in
reality, there is also the likehood that
the true values being estimated lie
beyond the extremes of the available
samples. Procedures that restrict the
weights to within O and 1 can only
attain estimates that lie between the
minimum and maximum sample
values.

The Methodology of Ordinary
Kriging

For a more comprehensive treatment
of the ordinary kriging methodology,
the reader is referred to Isaaks et al
(1989). The steps involved in
ordinary kriging are as follows:
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I. Compute the experimental
variogram and deduce from the
output whether it is feasible to
interpolate the data

2. If feasible, use a suitable
variogram model to generate
value surface on a regular grid

3. Use the surface to interpolate
values at unvisited sites

Computing the
variogram

experimental

The experimental variogram is the
first step towards a description of the
regionalised variation. It provides
useful information for interpolation,
optimising sampling and
determining spatial patterns. The
variogram reveals the nature of the
variance-covariance structure given
by the actual data and provides an
insight into the pattern of spatial
continuity present in the dataset.

If the conditions specified by the
intrinsic hypothesis are fulfilled,
the semi-varianceyA(h) can be
estimated from sample data:

A l
ih=75; 3 {e() -2 (oem b

where p is the number of pairs of
sample points of observations of the
values of attributes z separated by
distance h. A plot of yA(h) against
h is known as the experimental
variogram (Isaaks et al, 1989).

With h representing the lag, a typical
experimental variogram takes the
appearance of a curve that shows a
steep rise from lag O but which
changes to a more gradual one at
larger h to eventually reach some
kind of a plateau. The shape is
illustrated in Figure 1.
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Figure 1: A Typical Shape for Experimental

Variogram

Eapermenta vaouian

Since the experimental variogram is
a plot of the variances of difference
against lag distances, it provides an
indication about the nature of
spatial dependence present in the
data. The shape derives from the
fact that the spatial dependence
between data points is greater when
two points are at a shorter distance
of one another than when they are
further apart. The rising part of the
curve describes how inter-site
differences are spatially dependent:
the closer the sites together, the more
similar their z values are, as
indicated by the low semi-variance
values.

Modelling the experimental
variogram

The next step is to decide on the
suitable model to fit the data, taking
into account the configuration of the
experimental variogram, the sill and
the nugget values, which are further
explained below. A curve from
mathematical models is fitted to
experimentally derived semi-
variances in order to describe the
way in which semi-variance changes
with the lag (Burrough, 1986). This
curve displays several important
features. First, at large lag values, it
levels to what is known as a sill,
implying that at these lag values, no
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spatial dependence exists between
the data points because all estimates
of variances of difference are
invariant with distance. Second, the
curve rises from a low value to the
sill, reaching it at a value A, known
as the range. This describes the
range of spatial distances at which
inter-site differences are spatially
dependent. Within this range, the
closer together the sites, the more
similar the values at the sites are.
The range gives an idea about the
size to consider for a search window.
If the distance separating an
unvisited site from a sampled point
is greater than the range, then the
latter can make no useful
contribution to interpolation - it is
too far away.

The range of the variogram therefore
provides information about the size
of the search window to consider. In
effect, it defines the radius of distance
from the point under investigation
within which sample data points
should lie to be considered
influential to the estimation. These
distances can vary as a result of
anisotropy, which modifies the shape
of the search neighbourhood from a
circle to an ellipse.

Another feature of the fitted model is
that it does not necessarily pass
through the origin but cuts at a
positive value of y (h) despite the
theoretical assertion that the semi-
variance should be zero at lag 0.
This situation arises because the
positive value estimates the residual,
spatially uncorrelated noise g". Also
known as the nugget, g" represents
the variance of measurement errors
combined with that from spatial
variation at distances much shorter
than the sample spacing, which
cannot be resolved (Isaaks er al,
1989).
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A number of variogram models are
possible but the more common
models in use are the spherical,
exponential and gaussian models.
Basic variogram models can be
divided into two broad groups,
known generally as transition and
non-transition models. Transition
model 1s ‘bounded’ in the sense that
its variogram reaches towards an
upper bound in the sill. Non-
transition model, on the other hand,
is unbounded since its variogram
rises continuously as a function of
lag distance h. Some transition
models reach their sill
asymptotically; for such models, the
range is arbitrarily defined to be the
distance at which 95% of the sill is
reached (Isaaks er al, 1989).

Briefly, the spherical model has a
linear behaviour at small separation
distances near the origin but one that
flattens out at larger distances to
reach the sill at a. The tangent at the
sill crosses the sill at about two-
thirds of the range a (Isaaks et al,
1989). This model is normally used
where there is a clear range and sill
(Burrough et al, 1998). The
exponential model is linear at very
short distances near the origin but
rises more steeply compared to the
spherical model and flattens more
gradually. The model is more
appropriate where the approach to
the range is more gradual. The
Gaussian model has a parabolic
shape near the origin and is often
used to model extremely continuous
phenomena. Like the exponential
model, the Gaussian model reaches
its sill asymptotically and the range
is defined as the distance at which
the variogram value is 95% of the
sill. It is the only transition model
whose shape has an inflexion point.
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Fitting a model

Variogram fitting is an interactive
process requiring considerable
judgement and skill (Burrough et al,
1998). Model fitting is in order to
produce the values of the parameters
a, c, and c,. These values can be
obtained by least-squares or maximum
likelihood procedure.

When the nugget variance dominates
the local wvariation and the
experimental variogram shows no
tendency to diminish as £ & 0, the
interpretation is that the data are so
noisy that interpolation is not
sensible. In such a situation, the
best estimate of z(x) is the overall
mean computed from all sample
points in the region of interest
without taking spatial dependence
into consideration.

A noisy variogram, in which the
experimentally derived semi-
variances are scattered, suggests that
too few examples have been used to
compute it. As a rule of thumb, at
least 50 - 100 data points are
necessary to achieve a stable
variogram although smooth surfaces
require fewer points than those with
irregular variation.  Smoother
variograms can also be obtained by
increasing the size of the search
window.

The presence of a hole effect in the
experimental variogram (a dip in the
semi-variances at distances greater
than the range) may indicate a
pseudo-periodic pattern due to long
range variation over a study area
that is too small to encompass the
total range of variation (Burrough et
al, 1998). If the range is large, then
long-range variation dominates: if it
is too smali, then the major variation
occurs over short distances.
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d. Dealing with the directional issues

Anisotropy in the experimental
variogram suggests a directional
effect in wvalue pattern, but
directional differences can also
occur if there are insufficient
samples to get robust estimates in all
directions. In many cases where
samples are spaced irregularly, a
circular search radius is used to
define a zone whose mid-point is &
from its centre. All data points
falling within the circle are used to
estimate the contribution of (z, - z)®
from all pairs. If directional effect is
absent, the resulting variogram is
isotropic, i.e., it results from
averaging over all directions
(Burrough et al, 1998). However,
variograms can also be computed in
specific directions f, in which case
they are known as anisotropic
variograms. If different ranges and
sills are obtained for different
variograms, they may indicate
spatial variation that varies with
direction.

Kriging the Property Value: A Case Study

The implementation of this kriging case
study was performed with GS+, a
commercial geo-statistical package
available from Gammadesign. This
software provides the functionality
necessary for performing the various tasks
required in kriging analysis. Further, it
generates its output in ASCII files which
can be read into other GIS application
software such as ArcView.

As a tool for kriging, GS+ is rather versatile
(Robertson, 1998). It copes well with
interactive needs of the user. Its
interactivity allows models to be refined, or
the parameters to be adjusted on the fly.
This is very useful particularly when the
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need is to consider several alternative
models instead of just one. Speed is also
its plus point. Finally, the 3-d mapping it
provides along with the zoom and rotation
capabilities allow the user full control over
the display.

a.

Preparing the Data

The dataset for this case study comes
from simulated house prices in
Newcastle upon Tyne, UK. It
embraces a total of 37,812 housing
properties located within the eight
sub-areas of Benwell, Byker,
Fenham, Gosforth, Heaton, Jesmond,
Kenton, Longbenton and Walker.
Each house is represented by its seed
point in the digital map, and this has
been extracted from the Landline
data, which provides the original
positional information.

The data was then split into two
smaller sub-samples in the
proportion of 80% to 20%. The
larger sub-sample, consisting of
30,250 data points, is to be used in
the modelling. The smaller sub-
sample consisting of the remaining
7,562 data points is to be retained as
an independent ‘test’ sample for the
purposes of tests on the models
derived with the first sub-sample.

In undertaking this case study, three
effects are of particular interest to
investigate in terms of their
influences on the performance of
kriging models: first, the effect of
sample data density; second, the
effect of sample stratification by
house type; and third, the effect of
variable normalisation.

In the real world, house price data
are not as abundant as the simulated
data suggests since such data does
not regularly become available.
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House price data arises when the
property undergoes market
transactions, but for any particular
property, this does not occur with any
regularity. Further, property value is
not static and changes over time.
Since value has its validity period as
dictated by the market to which the
property relates, not all price data is
relevant for a particular time-period
of interest. This introduces a further
limitation to the availability of value
data. To study the influence of data
availability on kriging’s predictive
performance, tests at three levels of
data density corresponding to 5,000,
10,000 and 15,000 house units will be
performed.

It is commonly observed that
different house types have different
characteristics and this heterogeneity
leads to their different value classes
in the market. House type is
therefore a significant influence to
consider and needs to be accounted
for in modelling. Kriging, due to its
single-variable nature, has no
intrinsic means for dealing with this
problem. As such, it would also be
of interest to investigate if separate
modelling of each property type
would lead to better performance
with kriging.

So far, the basis of interpolation is
the value for the total property (land
and building). However, it is also of
interest to investigate the effect of
value normalisation on kriging’s
predictive performance. Value
normalisation in this study means the
‘devaluation’ of whole property
value in which the value of a house
is averaged over its parcel size.
Underlying this approach is the
supposition that normalising this
way will improve homogeneity in
the data and hence help improve the
modelling with kriging.
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b Variogram modelling on property Figure 3: Isotropic Variogram for the 5,000 and
value 15,000 Data Points Respectively

Y Semivariance Ana)

Figure 2 shows the isotropic
variogram produced from 10,000
house values in this study. Plotting
at uniform lag distance intervals of
730 metres, the plot shows a typical
rising trend, hitting the peak at an
approximate lag distance of 3,400
metres followed by a declining trend
to the trough at about 5,400 metres ; sdslala ;
and a rising trend again thereafter. Semi-variance analysis based on 5,000 points
The whole shape takes the
appearance of a reflected S-curve.
The semi-variance analysis for the
data taken at lower and higher
densities of 5,000 and 15,000 points
respectively  reveals  similar
variogram shapes, as shown in
Figure 3.

Figure 2: Isotropic Variogram for the 10,000 Data
Points

Semi-variance anal ed on 15,000 points

The variogram indicates spatial
dependence that weakens as
separation distance increases up to
around 3,400 metres but this
dependence seems to grow thereafter
for some larger separation distances
before diminishing again finally.
This  behaviour of  spatial
dependence is generally typical apart
B el i from the temporary dip, which is
Semi-variance analysis based on 10,000 points rather anomalous when the ideal
experimental variogram would show
a clear and horizontal sill after 3,400
metres. In the circumstances, it
seems best to treat the data with one
of the transition models, by
assuming the presence of a sill that
cuts a path roughly midway between
the peak and the trough. Indeed the
default model fitted by the GS+ is
precisely of this nature.

Y sotiopie Vartagrom j L

The variogram in Figure 4 shows no
clear anisotropy or directional

A close-up of the isotropic variogram
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Figure 4: An Analysis of the Multi-Directional
Effect of Spatial Dependence
(anisotrophy)

Variograms for the multi-directional semi-variance analys

on 3,000

data points

Variograms for the multi-directional semi-variance analysis on 15,000
data points

variation of spatial dependence in
the data, and this negates the need to
consider models of non-
omnidirectional nature.

Modelling for property value as
normalised by parcel size

Figure 5 shows the experimental
variogram produced from the 5,000
data points by the normalised value
variable. The semi-variogram
pattern seen here defies the textbook
description of an ideal variogram
shape. Here, the typical rising trend
at the beginning is followed by an
ever declining trend to give the
overall appearance of a peaked hill.
This appears to indicate that at
separation distances larger than
about 3,300 metres, the square metre
value of houses tends to become

Figure 5: The Variogram for the Normalised
Value Based on the 5,000 Data Points

Y semwanance Analysis

more similar again, in fact more
similar the further the houses are
apart. This behaviour is neither
intuitive nor easy to explain in the
present data set. The nature of
spatial dependence in the data as
described by the experimental
variogram appears too anomalous to
be treated with kriging. On this
basis, the planned extension to this
investigation involving the
normalised value is abandoned and
is not pursued further in this case
study.

Modelling by property type

Modelling by property type requires
separate semi-variance analysis on
the data points on different property
types. The implications are two-fold
here: each property type is a much
smaller sample size than the original
work dataset, and each property type
is an uneven distribution of data
points spatially. Figure 6 shows the
spatial distribution and sample size
for each house type.

It is clear from Figure 7 that the
variograms are not as smooth as for
the whole work dataset. The
combined effects of reduced sample
size and the scatteredness of data
points could have contributed to this
situation. The variogram for flat
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Figure 6: The Spatial Distribution of Houses by Type
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Semi-detached (7,782 points)

units, which has the lowest number

Terraced (11.043 points)

This

Link house (5.144 points)

allows the house value

of points, is particularly jagged. It is
also noticed that variogram
smoothness in this data generally
improves for the larger sample house
types although the semi-detached
variogram provides an exception; this
is certainly true in the case of the link
house.

The variogram for the apartment data
is devoid of a sill but instead shows a
continuous linear rise over the spatial
extent considered. For such spatial
structure, theory recommends the use
of a linear model (Burrough et al,
1998).

Value interpolation by Kriging

Given the information from their
respective variograms, kriging
interpolations are performed on the
independent 7,562 point test dataset.
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represented by each point to be
estimated by the kriging method.
Since the spatial structure in the
normalised values does not provide a
clear case of spatial dependence for
modelling with kriging and also,
since the patterns of spatial
dependence for individual property
types are too erratic, the
interpolations based on the
individual types are abandoned.

A series of kriging interpolation are
performed based on the three levels
of sample density used for the weight
calculations. The interpolated values
are then compared against their
corresponding original final values in
the dataset and the PRESS statistics
calculated. Although kriging does
produce estimates of errors, these
estimates are not looked at because
the PRESS statistics present a more
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Figure 7: The Isotropic Variograms by House Iype

Flat

Apartment

Detached Semi-detached

Terraced ‘ ‘ Link
desirable criterion for the N= the number of observations in
comparison of performance due to the test sample
their tests on independent samples. P = predicted house value

A=the observed house price
The PRESS statistic is defined as:

where The aim is to achieve minimum value for
_ PRESS. The model with the smallest
PRITSS Z( roo PRESS statistic prevails as the best model

for predictive performance.
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The results on four of the interpolation runs are of interest and their PRESS sum

calculations are presented in Table 1.

Table 1: The PRESS Statistics Obtained for the Different Levels of Data Density Used in the
Kriging of Independent Test Data Points

Data density and model fitted PRESS Sum PRESS Maximum
Spherical model on 5,000 data points 915,481,005,731 25,913,695,301
Exponential model on 5,000 data points 864,920,477,807 26,800,453,327

Spherical model on 10,000 data points

834,042,753,822 25,876.385,828

Spherical model on 15,000 data points

793,489,424,232

26,114,944,609

There is a progressive reduction in the
PRESS sum with greater number of data
points used. Since lower PRESS sums are
associated with higher predictive
performance, the above results suggest that
overall, the use of a greater number of
sample points has led to improved
predictive power of kriging in this
investigation. At the individual property
level, however, the position is not so clear.
The statistics on PRESS maximum show
that increasing the sample size does not
necessarily reduce the gap between the
actual and the predicted values in the
property with the largest value difference.

Comparing the Predictive Performances
of Kriging and MRA

For the comparison of predictive
performance between kriging and MRA,
PRESS statistics are again used. They are
computed from the predictions made by
both the methods on house values in the
common (7,562 points) test dataset. The
PRESS statistics for the kriging models are
already available as a result of the
comparison performed on the effect of
different sample sizes used on predictive
performance. It is now necessary to obtain
similar statistics for the MRA models.

For the MRA, two models have emerged as
the best in terms of predictive performance
in this research. The models are EnterA and
StepA (Appendix A). To arrive at the
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prediction of these models on the test data,
their equation forms are applied on the
appropriate variables in the dataset
concerned. Once the predicted values for
each model have been obtained, PRESS
statistics are calculated in the same way as
before.

Table 2 presents the PRESS statistics for
both the kriging and MRA models. The
PRESS sums indicate that the kriging
models have not outperformed the MRA
models in terms of predictive performance.
In fact, the PRESS sums of the latter are
more than four times lower than that
achieved by the best model from kriging.
The means and standard deviations of the
PRESS suggest that the variability in the
gap between predicted and actual values is
much greater in kriging than in the MRA.
Given the fact that the MRA models have
been derived with a larger sample of 30,250
data points and bearing in mind the finding
that predictive improvements have been
achieved with successive increases in
sample size used, it is interesting how much
further kriging models would have
improved if this investigation has had the
opportunity of modelling them with the
larger sample.

However, kriging results do have their
interesting aspects too in this investigation.
As Table 3 shows, the minimum predicted
values obtained by the kriging models are
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Table 2: PRESS Statistics Obtained from Modelling the Independent Test Dataset: Kriging V. MRA

Model PRESS Sum PRESS PRESS PRESS PRESS
Minimum Maximum Mean Std. Dev
KRIGING
15000, spherical 793,489,424,232 0.29 26,114,944,609} 104,931,159 423214 ,465
10000, spherical 834,042,753,822 0.38 25,876,385,828 | 110,293,937 430,836,079
5000, exponential 864,920,477,807 2.69 26,800,453,327| 114,377,212 441,553,144
5000, spherical 915,481,005,731 0.10 25,913,695,301 | 121,063,344 435,826,102
MRA
Stepwise (StepA) 181,942,677,523 0.23 3,714,051,752 24,060,127 82,654,039
EnterA (EnterA) 181,972,992,980 1.93 3,719,835,025 24,064,136 82,697,784

much closer to the actual minimum
property value in the sample compared to
those of the MRA models. Further, the
kriging models do not produce negative
predictions whereas the MRA models do.
If this is taken in isolation, it means that
kriging is more realistic than MRA since
their estimates are more ‘acceptable’ in
terms of the common perceptions in the real
estate community. The krigings’ predicted

means are in line with the mean of the
actual value. So are the standard
deviations; in fact the krigings’ standard
deviations are smaller than that of the actual
value. Unfortunately, the ceiling values of
prediction in kriging are much lower than
the maximum of the actual value. This has
meant that very poor predictions have been
made on the properties with the very largest
actual values.

Table 3: Descriptive Statistics for the Predicted and Actual Values

Range Minimum Maximum Mean Std. Dev.
KRIGING
15000, spherical 134,014.74 9,656.66 143,671.40 43,143.26 17,565.00
10000, spherical 173,495.59 8,361.57 181,857.16 43,209.54 18,506.91
5000, exponential 149,443.39 9,010.08 158,453.47 43,063.52 17,429.49
5000, spherical 131,490.60 9,441.27 140,931.87 43,079.91 16,699.61
MRA
Stepwise (StepA) 192,053.77 - 7,641.80 184,411.98 43,291.57 19,700.88
EnterA (EnterA) 192,055.74 - 7,691.19 184,364.55 43,291.72 19,701.67
ACTUAL VALUE 238,271.00 7,084.00 245,355.00 43,346.78 20,533.08

Conclusions

This study shows that kriging is a poorer
predictor of property values compared to
MRA. However, this has to be set against
the fact that a simulated dataset has been
worked with and that this dataset has been

geared directly towards modelling with
MRA. Given that this is the case, the
results are perhaps not too surprising. It
would be interesting if we can make similar
comparisons based on real data where both
methods are on the same level of advantage
or disadvantage.
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Despite its comparatively inferior
predictive performance, the potential of
kriging for mass appraisal of housing
properties is perhaps not to be dismissed
altogether. The experimental variograms
arrived at in this study show that the
patterns of spatial dependence exist in
property values, suggesting that the
exploitation of spatial correlation for value
determination does have its basis. It is just
that reliance on this pattern of spatial
dependence alone may not be good
enough to arrive at estimates that compare
favourably with MRA, or perhaps that the
kriging models are in need of further
refinements. Further investigations are
necessary. As the bottom line, kriging
should be useful where the concern is with
the investigation on locational factor in
isolation in valuation as opposed to the
investigation on property value in this
study, which involves a multiplicity of
factors.

The attraction of kriging comes from the
fact that it utilises the information about
localised spatial variation to estimate
values at local positions. To arrive at this
information, however, a large number of
sample points and their fair distribution
over the study area are important. It is this
that probably makes the technique rather
workable for housing properties, where the
volume of data and their spatial omni-
presence are relatively more favourable
compared to most other types of properties.
For properties that do not have such
advantages (industrial properties, for
example, are clustered around certain
locations only), the practicality of a similar
exercise remains to be tested and requires a
separate study. For the moment we can
only presume that the reliability of the
estimates will be lower due to the greater
presence of regions where no sample data
points are available to draw information
from for interpolation.

One issue remains particularly outstanding
from this study: the lack of intuitive appeal
that some of the kriging results provide. It
is difficult to reconcile the fact that the
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variogram is better behaved for the data
that combines all the property types than
for the data that has been made more
homogeneous by dealing with only a
particular property type. Probable
explanations lie in the reduced sample size
and the unevenness of spatial spread that
occurs in the individual property dataset,
but these are just possibilities. Could there
be other more valid explanations?

It is argued that a major issue with kriging
lies in the fitting of appropriate models to
interpolate. This is because the fitting
involves examining the variogram plots
and choosing a model that is considered the
best fit, a procedure that can entail arbitrary
decisions on the part of the user.  Collins
(1996), for example, remarks that kriging
has been criticised due to the subjective
nature of variogram fitting — a central
component of kriging. Nonetheless,
arbitrariness is not something the user can
avoid completely in dealing with problems
of this nature. For that matter, not even the
MRA can claim to be entirely free from
arbitrary decisions, particularly in the
choice of variables and of equation forms
to use. On this score, kriging cannot be
said to be any less desirable than the
regression technique.

On the basis of the above initial evaluation,
this study recommends that kriging should
be investigated further before decisions are
made about its utility for valuation. This
constitutes yet another benefit the
consideration of geography contributes
towards the practice in valuation.
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Appendix A
Comparison of Regression Coefficent from the Different Regression Models
NEWCI11 DATASET (24,033 records)
UNLOGGED | LOGGED
FULL VARIABLE

EnterA StepA EnterB StepB
(Constant) -2,286.615 - 1,454.892 14,923.027 15,188.478
ACCESS 2,484.021 2,361.140 2,377.030 2,338.168
AGE -239.279 -239.322 - -
BLD AREA 189.742 189.771 190.577 190.525
C_FIN 455.750 455.487 466.173 465.982
DF _SCH -1.097 -1.087 -0.545 -0.567
DISTCITY -2.503 -2.504 -2.536 -2.535
DISTROAD 0.750 - 0.220 -
DISTTOWN -1.359 - 1.357 -1.442 - 1.444
DSTMETRO -0.302 -0.307 - -
GEOGI -22,623.081 -22,632.347 -20,957.772 -20,967.179
GEOG2 -19,876.360 - 19,874.560 - 19,079.748 - 19,091.350
GEOG3 -20,161.101 -20,179.121 - 18,599.337 -18,614.185
GEOG4 2,586.272 2,583.948 3,245.591 3,246.849
GEOGS 24,098.266 24,095.323 24,504.722 24,502.517
GEOG6 10,676.208 10,676.893 10,913.277 10,918.283
GEOG7 - - - -
GEOGS -13,572.188 -13,577.371 -12,851.418 -12,841.671
GEOGY -16,538.263 - 16,544.409 - 15,696.363 - 15,698.330
LANDAREA 83.290 83.253 83.486 83.542
LEVEL NO - 5,909.085 -5912.154 - 5,600.600 -5,594.127
LNDMETRO - - - 1,122.217 - 1,122.864
LNAGE - - -4,428.472 - 4,429.468
LNNOBATH - - 4,821.346 4,820.199
LNROOMNO - - 7,629.416 7,626.449
NBOR_QUA 3,144.258 3,147.381 3,212,139 3,212.718
NO_BATH 2,913.904 2,914.328 - -
NOISE -1,324.245 -1,363.038 - 1,402.315 -1,413.945
Q FIN 1,005.874 1,005.625 1,004.582 1,0604.176
ROOM_NO 2,431.791 2,431.219 - -
UNITYPE! 28.357 - - 785.530 - 781.006
UNITYPE2 3,268.569 3,262.827 3,302.410 3,308.332
UNITYPE3 2,455.196 2,455.183 681.470 682.187
UNITYPE4 - - - -
UNITYPES 874.841 874.400 -572.934 -579.376
UNITYPE6 -2,990.528 -2,992.763 - 3,596.005 - 3,615.763
ZONE!] - - - -
ZONE2 6,842.258 6,840.429 6,733.303 6,729.109
ZONE3 -2,897.712 -2,897.610 -2,856.022 -2,857.522
ZONE4 - 1,479.899 - 1,495.077 - 1,055.444 -
ZONES 8,296.337 - 7,626.575 -
ZONES6 -3.460.108 - 3,462.749 -4,829.184 -4,818.577

Note: The base reference of the above models is a hypothetical property of the LINK HOUSE type
located in RESIDENTIAL zone in HEATON.
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Appendix Al

Comparison of Regression Coefficent from the Different Regression Models (contd.)

NEWCI11 DATASET (24,033 records)

UNLOGGED LOGGED
DROPPED VARIABLE
EnterC |  StepC EnterD _ StepD |
(Constant) - 8,907.997 - 8,894.750 6,741.762 6,744.574
ACCESS 2,443.673 2,442.214 2,426.390 2,425.849
AGE -229.271 -229.268 - -
BLD AREA 134.132 134.132 136.723 136.719
C_FIN 440913 440.545 451437 451.023
DF SCH -1.427 -1.436 -0.864 - 0.866
DISTCITY -2.772 -2.771 -2.787 -2.786
DISTROAD - - - -
DISTTOWN -1.159 - 1.161 -1.241 -1.242
DSTMETRO -0.197 -0.199 - -
GEOG!1 -22,462.486 -22,459.119 -20,852.729 -20,848.820
GEOG2 -19,587.310 -19,589.577 - 18,810.346 -18,811.732
GEOG3 -19,962.375 -19,963.678 -18,431.178 -18,431.520
GEOG{ 3,115.646 3,115.653 3,712.447 3,712.134
GEOG5 24,209.355 24,209.986 24,587.238 24,588.189
GEOGS6 11,387.087 11,387.021 11,579.619 11,579.535
GEOG7 - - - -
GEOGS8 -13,018.798 -13,015.500 -12,375471 -12,374.898
GEOGY -16,882.447 -16,880.815 -16,063.152 -16,063.079
LANDAREA 118.690 118.695 117.635 117.634
LEVEL_NO - - - -
LNDMETRO B - -992.465 -992.343
LNAGE - - -4,219.521 -4,219.169
LNNOBATH - - 4,298.640 4,298.650
LNROOMNO - - 5,989.403 5,988.106
NBOR_QUA 3,152.117 3,152.194 3,217.570 3,217.661
NO_BATH 2,741.783 2,742.075 - -
NOISE -1,252.817 - 1,252.382 - 1,306.638 - 1,305.851
Q FIN 1,003.710 1,003.366 1,002.005 1,001.738
ROOM_NO 1,828.453 1,827.830 - -
UNITYPE1 3,703.790 3,703.473 2,671.978 2,671.296
UNITYPE2 7,028.773 7,027.252 6,740.750 6,738.879
UNITYPE3 2,667.579 2,667.199 1,020.444 1,020.749
UNITYPE4 - - - -
UNITYPES -2,079.645 -2,081.788 -3,250.310 - 3,250.959
UNITYPE6 - 8,526.287 - 8,531.673 - 8,850.190 - 8,851.125
ZONE1 - - - -
ZONE2 7,333.813 7,331.049 7,221.978 7,221.186
ZONE3 - 2,950.443 -2,952.494 -2,927.396 -2,927.868
ZONE4 -478.218 - -110.863 -
ZONES 7,747.334 - 7,150.754 -
ZONE6 - 4,821.144 -4,816.834 - 6,084.707 - 6,082.082

Note: The base reference of the above models is a hypothetical property of the LINK HOUSE type
located in RESIDENTIAL zone in HEATON.
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